发布日期:2022-07-18 10:07:59 点击量:830 信息来源:原创
“本文介绍了一种以次氯酸(HOCl)为基础的新技术,它能灭活病毒、细菌、芽孢和真菌,且对人体组织安全,对环境无害,无需有毒废弃物处理或有害物质管理,并能降低感染性朊病毒。本文于2017年10月6日发表于”The Infection Prevention Strategy (TIPS)“。
本文作者Jeff Williams博士,长期从事微生物学和传染病学的学术研究,曾任密歇根州立大学教授。
摘 要
人类病原体正在对过去一个世纪发展起来的抗生素产生抗药性,曾经可以通过抗生素来治疗的常见感染症状,现在即使采用了最佳实践疗法,也有可能出现致命。解决该风险的方法之一,就是在病原体发展成为危及生命的感染之前,对完整皮肤或开放伤口进行消毒,以有效阻止病原体的增殖。然而,目前的消毒方法都比较容易产生耐药性,且对人体组织有毒,并且使用后会对环境造成破坏。
本文介绍了一种以次氯酸(HOCl)为基础的新技术,它能灭活病毒、细菌、芽孢和真菌,且对人体组织安全,对环境无害,无需有毒废弃物处理或有害物质管理,并能降低感染性朊病毒。“
译者注:朊病毒是一类能引起哺乳动物和人的中枢神经系统病变的传染性的病变因子。朊病毒(prion virus)严格来说不是病毒,是一类不含核酸而仅由蛋白质构成的可自我复制并具感染性的因子。
引 言
稳定的次氯酸(HOCl)作为一种非常有效的环境消毒剂正在迅速崛起。这种发展迎合了人们对环境友好型合成化学品的日益关注,以及新出现的疾病的抗微生物趋势(Choffnes、Relman, and Mack,2010年;Coates,2012年;Gualerzi、Brandi、Fabbretti and Pon,2014年;Ventola,2015年)。
在病人护理、环境卫生和畜禽饲料添加剂中过度使用抗菌剂,有可能使药物回到抗生素之前的时代(Drlica and Perlin,2011;Fong and Drlica,2008;Kon and Rai,2016)。如今,各类病原体对传统消毒剂、抗菌剂和疗法的抗性逐渐增加,使用新的抗感染制剂已成为安全和成功管理住院患者的关键(Bhardwaj、Zeigler and Palmer,2016;Yazdankha et al,2006)。
美国FDA(食品及药物管理局)认为HOCl是“对多种微生物具有最高杀菌活性的游离氯”(US FDA,2015年),但在传统观念中HClO因会迅速降解而无效,其使用受到诸多限制(Lister,1952年)。近年来,HClO因其在哺乳动物和多数脊椎动物(包括鱼类)自然防御系统中作为“第一反应者”的作用而被认知,从广义上而言,HClO为感染控制提供了一个新的机遇(Klebanoff,1975;Albrich et al,1986;Black and Pickering,1998;Marcinkiewicz et al,2000)。此外,电解技术的进步克服了HOCl原有不稳定性带来的技术挑战,实现了稳定和高纯度HClO的大规模生产(Terry and Williams,2016)。 “
游离氯:以次氯酸、次氯酸根离子或溶解的单质氯形式存在的氯。
大量的测试和应用实践表明,稳定的HOCl是一种有效和安全的化合物,可满足不同领域的应用需求(Al-Haq、Sugiyama and Isobe,2005;Thorn et al,2012)。在pH 3或以下时,HOCl存在于盐酸和氯(分别为HCl和Cl2)的溶液中。在pH值为7.5或更高的溶液中,HOCl溶液含有更多的次氯酸盐(OCl-)。活性氯最终还原为氯离子(Cl-),导致传统方法制备的HOCl溶液的抗菌活性随时间而降低,并被描述为“高度不稳定”(USDA-AMS,2015年8月)。HOCl没有有毒物质的处理要求,OSHA认为HClO在使用后不属于危险废弃物,这为HOCl的使用提供了一个有力条件。HOCl可以使蛋白质变性而失去活性,特别是其对朊蛋白的灭活作用,为医疗机构疾病控制方案的设计和实施提供了新的机会(Hughson et al,2016)。朊病毒感染性尤其值得关注,因为已知朊病毒普遍存在,而且极难灭活(Abbott,2015)。“
译者注:OSHA,即职业安全与健康管理局。
因此,HOCl可以在必要时为患者护理提供可行的帮助。随着抗药性微生物的出现,从外来黄病毒到高侵袭性念珠菌、酵母菌,HOCl的重要性正在增加(Sherry et al,2017年;Clancy和Nguyen,2017年)。HClO作为一种暂未被广泛应用的感控产品,在环境卫生、消毒、食品安全和卫生领域都可能具有较大作为。“
译者注:黄病毒属(Flavivirus)是一大群具有包膜的单正链RNA病毒。该类病毒通过吸血的节肢动物(蚊、蜱、白蛉等)传播而引起感染。过去曾归类为虫媒病毒。在我国主要流行的黄病毒有乙型脑炎病毒、森林脑炎病毒和登革病毒。
次氯酸的历史
150多年前,次氯酸被认作为一种独特的化学物质(Cordova,1916)。在第一次世界大战中,次氯酸因其抗感染特性被广泛用作创伤伤口的抗菌剂(Smith,Drennan,Rettie and Campbell,1915),随后其应用逐渐扩展至环境卫生和治疗坏疽、白喉和猩红热(Beattie,Lewis and Gee,1917年)。到了20世纪40年代,伦敦医院已将酸化次氯酸盐得到的HClO溶液雾化用作防止病原体在空气中扩散的感染控制措施(Elford and van den Ende,1945)。
几十年后,HOCl被发现是在活化的人体中性粒细胞和其他组织内的吞噬细胞中自然形成的(Klebanoff,1975)。这是髓过氧化物酶与过氧化氢共同作用下,氯离子发生氧化反应产生的。
次氯酸的应用
在过去的20年里,有超过100份文献报道了HOCl在园艺、乳制品设施、动物产房、护理机构和医院中的应用表现,有力地证明了HOCl是不同行业中可靠、安全、高水平消毒的选择之一(Al Haq etal. 2012, Thorn etal., 2012)。HOCl作为一种化学消毒剂,对关键指示微生物(如孢子)展示良好的杀灭效果(Loshon,Melly,Setlow and Setlow,2001)。这些用途申请已在美国和欧盟已获得批准,包括美国农业部批准使用现场生产的HOCl作为各种农产品的安全清洗剂(美国农业部食品安全检验局,2017年)。
近几年,几份关于医疗保健方面的文献报道也值得重点关注。Fertelli等人(2013年)使用现场电解盐水制备的HOCl喷雾来净化接种了艰难梭菌孢子的病房表面。报告指出,与对照组相比,在使用HClO处理后,血压计、血氧计、床边便桶和药物泵等设备表面艰难梭菌减少了约105。Park等人(2007年)采用了类似的方法来测试HOCl对诺如病毒接种表面(陶瓷、不锈钢)的杀菌效果,结果表明在接触10分钟后杀菌效果大于99.9%。在费拉拉大学(意大利)进行了8周的研究后表明,暴露于低水平(<1ppm)的现场产生的HOCl后,医院水系统中军团菌显著下降,因此建议在其机构中使用HClO进行清洁干预和预防(Migliarina and Ferro,2014)。
在Hakim等人的一篇论文中,通过将HOCl进行喷雾,禽流感(H5N1)病毒在10秒或更短时间内被灭活(2015),因此考虑可将其用于病毒控制中。现场电解生成的HOCl气溶胶用于手术设施的卫生控制试验中,在研究期间对暴露于HClO气溶胶中的各种电子设备未检测到不良影响(Rainina et al.,2012)。这些研究报告为HOCl制剂的有效性和可靠性建立了信心,证明了其在医疗感染防控中的实际潜力。
次氯酸的稳定性
尽管有证据表明HOCl是一种卫生资源,但其商业化进展缓慢。精确控制次氯酸盐溶液的pH值,使反应平衡向以HOCl为主的方向转变(Wang et al,2007)。然而,事实证明,要在不受分子氯(Cl2)、三氯化碳、次氯酸盐或氯酸盐/亚氯酸盐离子混杂的情况下生产出一致的产品是很困难的。此外,以这种方式制备的HClO溶液如果没有做好原料管控和制程管理(如Wang等人所述),通常显示出不稳定性,无法体现出HOCl的优势(Soo Voon等人,2002)。
通过电解氯化钠水溶液产生HClO,已经可以实现的商业化运行。电解过程中分别在阳极和阴极产生HClO和氢氧化钠。阳极区产生的富含HOCl的溶液,但容易迅速转变为氯酸盐/亚氯酸盐和次氯酸盐的混合物(Eryilmaz and Palabiyik,2013年,Lister,1952年)。
HClO溶液
如果不依赖稳定性添加剂来抑制HClO的衰减,电解制备稳定的HOCl溶液并不容易(Wang et al,2007)。然而,美国一家叫Briotech的公司通过精细控制工艺条件实现了稳定性HClO的生产。Briotech HOCLTM是一种等渗溶液,含有约9000 ppm的Cl-和200ppm HOCl。因此,随着时间的推移,一部分HOCl最终转化为Cl-不会严重影响溶液的总Cl-含量,并且它保持在等渗浓度范围内。“
等渗溶液,指的是渗透量相当于血浆渗透量的溶液。如0.9%NaCl溶液和5%葡萄糖溶液。低于血浆渗透量的溶液称为低渗溶液,细胞在低渗溶液中可发生水肿,甚至破裂。高于血浆渗透量的溶液称为高渗液,细胞在高渗溶液可发生脱水而皱缩。
拉曼光谱记录的BrioHOCLTM中HOCl纯度的证据,以及其有效氯浓度的稳定性,即使在非最优条件下也能提供长期稳定储存(Hughson et al,2016年)。拉曼光谱证据表明,Brio-HOCLTM对次氯酸具有独特而窄的指纹,在波移光谱中看不到任何其他类型的活性氯(图1)。
图1. 728cm-1左右的单峰突出,表明Briotech溶液主要成分是HOCl,样品中未检测到其他类型的活性氯(氯气Cl2和ClO-1)。迹线下段的不规则现象是由背景信号引起的,与水样的任何成分无关。
次氯酸的功效
Brio HOCLTM在标准温度和压力下展示出了对传染性朊病毒的灭活能力(Hughson et al.,2016)。朊病毒是一种具有传染性的非活性畸形蛋白,可导致一系列的人类和动物致命性疾病,包括疯牛病和人类的克雅氏病。有证据表明,阿尔茨海默症具有朊病毒传播的传染性成分(Abbott,2015)。如引文中所述,已知朊病毒能够抵抗所有传统的灭菌方法,相比之下,这些方法都需要苛刻的条件,但是当它们暴露在含有160ppm有效氯浓度的Brio-HOCLTM溶液中(朊病毒在5分钟内减少99.9%;1小时后超过99.999%)时,它们被迅速破坏。此外,HClO对细菌孢子也具有杀灭作用,因此HClO制剂具有对医疗器械和外科器械进行高水平消毒的潜力(Russell,1990;Fertelli et al.,2013)。“
译者注:人类的克雅氏病是一种罕见的主要发生在50-70岁之间的可传播的脑病。受感染的人可以有睡眠紊乱,个性改变,共济失调,失语症,视觉丧失,物理,肌肉萎缩,肌阵挛,进行性痴呆等症状,并且会在发病的一年内死亡。
生物膜形成和HClO
伤口和无生命物体表面微生物污染的另一个并发状况是生物膜的形成。在室温下,将成熟的生物膜附着于聚氨酯(PU)管上,与Brio-HOCLTM接触5分钟后,附着生物膜的去除率达到95%或更高。使用DIC Nomarski光学显微镜对附着生物膜管段的5μm截面进行观察,如图2所示。使用超声分离PU管上附着生物膜的微生物(对照组)达7×105CFU/cm2。将附着生物膜的PU管置于Brio-HOCLTM中5分钟后,通过超声波分离从管道中释放的生物膜微生物低于最低检测限(平均93 CFU/cm2,n=4),去除率大于99.9%。
图2 对照组聚氨酯管上残留生物膜(暴露于Brio-HOClTM 5分钟后,样品中没有附着生物膜的迹象)(图片由密歇根州立大学病理学系Charles Mackenzie教授提供)
结论和意义
人类自身对感染的抵抗力取决于在抵御微生物入侵的第一道防线产生的HOCl。自然界已经将HOCl应用于脊椎动物亚门的免疫防御系统中,并且很好地证明了它的持续能力、速度、作用范围和可靠性。这也说明了HOCl的生物相容性,必须在体内迅速中和,以避免不利的生理影响。“
脊椎动物亚门(Vertebrata)是动物界中结构最复杂,进化地位最高的类群。
现在能够将HOCl应用于感控实践是21世纪的一大进步。采用HOCl作为一种稳定的消毒剂,也可以解决传统消毒程序中最令人不安和持续存在的一个漏洞——朊病毒。越来越多的证据表明,包括阿尔茨海默症在内的痴呆亚型可能是由微生物感染引起的,目前看起来像朊病毒相关蛋白(Abbott,2015)。有一种消毒剂可以从外科器械和医疗设施中消除这种风险,这是一个及时的发现,也是感染控制技术的可喜进步。
参考文献
Abbott, A. (2015) Alzheimer’s fear in hormone patients: Brain plaques may have been seeded by growth therapy. Nature (525) 165-166
Albrich, JM, Gilbaugh, JH, Callahan, KB & Hurst, JK. (1986) Effects of neutrophil-generated toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coli. J. Clinical Invest. 78, 177-184
Al Haq, M.I., Sugiyama, J., Isobe, S. (2005). Applications of Electrolyzed Water in Agriculture and Food Industries, Food Sci. Tech. Res. 11(2) 135-150
AMS Agricultural Marketing Service, Hypochlorous Acid, Technical Evaluation Report (2015), US Department of Agriculture
Bhardwaj, P., Ziegler, E., & Palmer, K. L. (2016). Chlorhexidine Induces VanA-Type Vancomycin Resistance Genes in Enterococci. Antimicrobial Agents and Chemotherapy, 60(4), 2209–2221. http://doi.org/10.1128/AAC.02595-15
Beattie, J. M., Lewis, F. C., & Gee, G. W. (1917). Hypochlorous Solution Electrically Produced from Hypertonic Saline as a Disinfectant for Septic Wounds and for the Throat in Diphtheria, Scarlet Fever, Etc. Br Med J, 1(2930), 256-259.
Black, KD and Pickering, AD.(1998) Biology of Farmed Fish. Sheffield Academic Press, ISBN 1-85075-877-8
Brinkman, V., Reichert, U., Goosman, C., Fauler, B., Uhlemann, Y., Weiss, D, Weinrauch, Y, Zychlinski, A. (2004) Neutrophil Extracelluar Traps Kill Bacteria, Science 303(5663), 1532-1535
Brio HOCl Material Safety Data Sheet, 2017, http://briotechusa.com/msds, accessed 29 May 2917
Chapman, A.L. (2002) Chlorination of Bacterial and Neutrophil Proteins During Phagocytosis and Killing of Staphlococcus aureus. J Bio Chem (277) 9757-9762
Choffnes, E. R., Relman, D. A., Mack, A., Institute of Medicine (U.S.). Forum on Microbial Threats., Institute of Medicine (U.S.). Board on Global Health., & National Academies Press (U.S.). (2010). Antibiotic resistance: implications for global health and novel intervention strategies: workshop summary. Washington, D.C.: National Academies Press.
Clancy CJ, Nguyen MH. (2017) Emergence of Candida auris: An International Call to Arms. Clin Infect Dis. 15;64(2):141-143
Clark, J. et al. (2006) Efficacy of Super-Oxidized Water Fogging in Environmental Decontamination, Journal of Hospital Infection, 64;4, 386-390
Coates, A. R. M. (2012). Antibiotic resistance. Heidelberg: Springer.
Cordova, R. F. (1916). The Therapeutic Value of Hypochlorous Acid. Br Med J, 1(2888), 651-652
Drlica, K., & Perlin, D. (2011). Antibiotic resistance: understanding and responding to an emerging crisis. Upper Saddle River, N.J.: FT Press.
Elford, W. J., & van den Ende, J. (1945). Studies on the disinfecting action of hypochlorous acid gas and sprayed solution of hypochlorite against bacterial aerosols. J Hyg (Lond), 44(1), 1-14.
Eryilmaz, M. and Palabıyık, M. (2013) Hypochlorous Acid – Analytical Methods and Antimicrobial
Activity. Tropical Journal of Pharmaceutical Research 12 (1): 123-126
Fertelli D, Cadnum JL, Nerandzic MM, Sitzlar B, Kundrapu S, Donskey CJ. (2013) Effectiveness of an electrochemically activated saline solution for disinfection of hospital equipment. Infect Control Hosp Epidemiol. 34(5):543-4.
Fong, I. W., & Drlica, K. (2008). Antimicrobial resistance and implications for the twenty-first century. New York, NY: Springer.
FSIS Food Safety and Inspection Service Directive 7120.1, (2017) US Department of Agriculture, (https://www.fsis.usda.gov/wps/wcm/connect/bab10e09-aefa-483b-8be8-809a1f051d4c/7120.1.pdf?MOD=AJPERES) accessed 07 May 2017
Gualerzi, C. O., Brandi, L., Fabbretti, A., & Pon, C. L. (2014). Antibiotics: targets, mechanisms and resistance. Weinheim: Wiley-VCH.
Hakim H, Thammakarn C, Suguro A, Ishida Y, Kawamura A, Tamura M, Satoh K, Tsujimura M, Hasegawa T, Takehara K. (2015) Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments. J Vet Med Sci. 77(2):211-5
Hughson, A. G., Race, B., Kraus, A., Sangaré, L. R., Robins, L., Groveman, B. R., … Caughey, B. (2016). Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid. PLoS Pathogens, 12(9), e1005914. http://doi.org/10.1371/journal.ppat.1005914
Krčméry, V., Mitsuhashi, S., & Rosival, L. (1980). Antibiotic Resistance: Transposition and Other Mechanisms. International Symposium on Antibiotic Resistance, Prague: Avicenum; Berlin ; New York: Springer-Verlag.
Klebanoff, S. J. (1975) Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes, Semin Hematol. 12(2):117-42.
Kon, K. V., & Rai, M. (2016). Antibiotic resistance: mechanisms and new antimicrobial approaches. London, UK: Elsevier Academic Press.
Liden, B.A. (2013) Hypochlorous acid: Its multiple uses for wound care. Osteotomy Wound Management. (9) 8-10.
Lister, M.W. (1952) The Decomposition of Hypochlorous Acid. Canadian J of Chemistry (30) 879-889
Loshon CA, Melly E, Setlow B, Setlow P. (2001) Analysis of the killing of spores of Bacillus subtilis by a new disinfectant, Sterilox.J Appl Microbiol. 91(6):1051-8
Marcinkiewicz, J, Chain, B, Nowak, B, Grabowska,A, Bryniarski, k & Baran, J. (2000) Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflamm. Research, 49,280-289
Migliarina, F. and Ferro, S. (2014) A Modern Approach to Disinfection, as Old as the Evolution of Vertebrates, Healthcare (2) 516-526
Ministry of Health, Dubai, United Arab Emirates, 2016, (internal unpublished report, available from Briotech on request)
Nakagawara, Shunji, GOTO, Takeshi, NARA, Masayuki, OZAWA, Youichi, HOTTA, Kunimoto, & ARATA, Yoji. (1998). Spectroscopic Characterization and the pH Dependence of Bactericidal Activity of the Aqueous Chlorine Solution. Analytical Sciences, 14(4), 691-698.
OSHA Hazard Communication Standard: 29 CFR 1910.1200
Palmer, LJ, Cooper, PR, Ling, MR, Huisson, A & Chapple, IL. (2012) Hypochlorous acid regulates neutrophil extracellular trap release in humans. Clin. Exp. Immunology 167, 261-268.
Park GW, Boston DM, Kase JA, Sampson MN, Sobsey MD. (2007) Evaluation of Liquid- and Fog-based Application of Sterilox Hypochlorous Acid Solution for Surface Inactivation of Human Norovirus. Appl Environ Microbiol. 73(14):4463-8.
Rainina, E.I., Luna, M, Soltis, MA, Godoy-Kain, P, McCune, DE, Cook, JE, Demons, ST and Weston, JH. (2012). Exploratory use of microaerosol decontamination technology (PAEROSOL) in enclosed, unoccupied hospital setting. US Department of Energy Report PNNL-21387 from Pacific Northwest National Laboratory under Contract DE-AC05-76RL01830.
Robson, M. C., Payne, W. G., Ko, F., Mentis, M., Donati, G., Shafii, S. M., … Bassiri, M. (2007). Hypochlorous Acid as a Potential Wound Care Agent: Part II. Stabilized Hypochlorous Acid: Its Role in Decreasing Tissue Bacterial Bioburden and Overcoming the Inhibition of Infection on Wound Healing. Journal of Burns and Wounds, 6, e6.
Russell, A.D. (1990) Bacterial Spores and Chemical Sporocidal Agents, Clinical Microbiology Reviews, 3(2); 99-119
Rutala, WA, Weber, DJ (2010) Guideline for disinfection and sterilization of prion-contaminated medical instruments. Infect Control Hosp Epidemiol. 31(2):107-17
Sakarya S, Gunay N, Karakulak M, Ozturk B, Ertugrul B. (2014) Hypochlorous Acid: an ideal wound care agent with powerful microbicidal, antibiofilm, and wound healing potency. Wounds 26(12):342-50.
Sherry L, Ramage G, Kean R, Borman A, Johnson EM, Richardson MD, Rautemaa-Richardson R.( 2017) Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant Candida auris. Emerg Infect Dis.23(2):328-331
Smith, J. L., Drennan, A. M., Rettie, T., & Campbell, W. (1915). Experimental Observations on the Antiseptic Action of Hypochlorous Acid and Its Application to Wound Treatment. Br Med J, 2(2847), 129-136
Soo-Voon, L., Yen-Con H., Donghwan C., Anderson, J., Erickson, M., Morita, K. (2002) Effects of storage conditions and pH on chlorine loss in electrolyzed oxidizing water. J. Agric Food Chemistry (50) 209-212.
Steininger, J.M. (1985) PPM or ORP – Which Should Be Used, Swimming Pool Age and Spa Merchandizer Chemtrol (http://www.sbcontrol.com/ppmorp.pdf) accessed 07 May 2017
Terry, D and Williams, J.F. US Patent Application # 62-353,483.
Thorn RM, Lee SW, Robinson GM, Greenman J, Reynolds DM. (2012) Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments.
Eur J Clin Microbiol Infect Dis. 31(5):641-53
US Food and Drug Administration, Safe Practices for Food Processes (2015), Chapter V, Analysis and Evaluation of Preventive Control Measures for the Control and Reduction/Elimination of Microbial Hazards on Fresh and Fresh-Cut Produce, Section 2.3 (http://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm091363.htm, accessed 07 May 2017)
Ventola, C. L. (2015). The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics, 40(4), 277–283.
Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, Hwong W, Barati E, Belisle B, Celeri C, and Robson MC (2007) Hypochlorous Acid as a Potential Wound Care Agent, Part I. Stabilized Hypochlorous Acid: A Component of the Inorganic Armamentarium of Innate Immunity Journal of Burns and Wounds (6) 65-79
Weiss, S.J., Klein, R., Slivka, A., Wei, M. (1982) Chlorination of Taurine by Human Neutrophils: Evidence for Hypochlorous Acid Generation. The Journal of Clinical Investigation (70) 598-607
Yazdankhah, S. P, Scheie, A.A, Høiby, E. A., Lunestad, B., Heir, E., Fotland, T.O., Naterstad, K, and Kruse, H. (2006) Microbial Drug Resistance. 12(2): 83-90.